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Nearly incompressible viscous hydrodynamic fluids are investigated using nonlinear fluid simulations.
Nearly incompressible fluids possess acoustic modes through high frequency fluctuations associated with the
subsonic fluid Mach number. These modes, in combination with the fluid modes, drive linearly unstable modes
and nonlinearly excite flows. The nonlinear flows damp the long wavelengths in our simulations, and are
dissipated resonantly when certain nonlinear conditions are satisfied. In agreement with our analytic analysis,
the nonlinearly saturated flows in nearly incompressible fluids are generated through the action of the Reynolds
stress forces.
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I. INTRODUCTION

One of the most remarkable of astrophysical observations
is the Kolmogorov-like interstellar(electron) density spec-
trum [1], extending over decades and decades in wave num-
ber space. Remarkably, similar density spectra are observed
in the solar wind [2] as well. The ubiquity of the
Kolmogorov-like density spectrum led Montgomeryet al.
[3] to suggest an explanation based on coupling incompress-
ible MHD fluctuations to density fluctuations through a
“pseudosound” relation[4]. The precise nature of the rela-
tionship between an incompressible fluid description and
compressible fluctuations was elucidated with the develop-
ment of “nearly incompressible”(NI) hydrodynamics and
MHD [2,5–10]. Through the development of a careful expan-
sion technique, the low(turbulent) Mach number fluid equa-
tions can be expanded to include the effects of acoustic fluc-
tuations as leading-order corrections to the incompressible
fluid model. The resulting equations[9] comprise the famil-
iar incompressible hydrodynamical and MHD equations at
leading order, together with a modified set of compressible
hydrodynamical equations in which sources due to back-
ground incompressible fluid modes drive linearly unstable
modes. Thus, the NI fluid equations retain compressibility to
first order, producing(magneto)acoustic modes as well as
convective modes. NI hydro and MHD have been surpris-
ingly successful in the solar wind where predicted correla-
tion are seen frequently[5,8] and predicted anisotropies are
observed[11]. However, the basic nonlinear development of
NI hydro and MHD remain completely unexplored and this
report presents the first fully self-consistent investigation of
NI hydrodynamics. We find that NI hydrodynamics admits
remarkably rich and complex phenomena.

In this paper we explore the nearly incompressible hydro-
dynamic equations using nonlinear fluid simulations. We fo-
cus primarily on wave-wave interactions between nearly in-
compressible fluctuations driven by background viscous
incompressible fluctuations. The NI fluid models incorporat-
ing thermal transport are considered elsewhere. Our simula-

tions show that such interactions lead to nonlinearly gener-
ated flows through the action of the Reynolds stresses on the
fluid. This discovery is supported by our analytical studies of
the zero-frequency component of the nonlinearly saturated
flows.

The rest of the paper is organized as follows. The basic
equations of the NI model are described in Sec. II. The linear
modes giving rise to acoustic waves in the low Mach number
fluid and the instability excited nonlinearly by theky=0
mode are described in Sec. III. Section IV deals with nonlin-
ear fluid simulations that demonstrate the excitation of non-
linearly saturated flow(ky=0 mode) instability. A theoretical
basis for understanding the nonlinear flow mode in our non-
linear fluid simulations is also discussed. The mode coupling
calculation explains qualitatively the interaction between
nonlinear flow mode and the underlying turbulence. Conclu-
sion are discussed in Sec. V.

II. MODEL EQUATIONS

The set of NI hydrodynamics fluid equations derived by
Zank et al. [9] couple convective fluid motion with high
frequency acoustic fluctuations describing appropriately the
high b (whereb is the ratio of plasma and magnetic field
pressures) interstellar plasmas. The background incompress-
ible fluid can be described by the usual equations of incom-
pressible hydrodynamics,

]

] t
U` + U` · = U` = − = p` + m=2U`, = ·U` = 0.

s1d

Here, the superscript̀ indicates that the velocityU` and the
pressurep` variables satisfy the incompressible fluid equa-
tions Eq. (1). The incompressible pressure satisfies=2p`=
−= ·sU` ·=U`d. The weakly perturbed compressive fluctua-
tions about the incompressible modes(denoted by super-
script`) for velocity, pressure, and density variables are rep-
resented byU=U`+eU1,p=1+e2sp`+p*d, and r=1+e2r1,
respectively. The nonlinear fluid equations describing the dy-
namical evolution of the compressible fluctuations in the NI
hydrodynamical description[6,9] contain the compressible*Electronic address: dastgeer@ucr.edu
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fluid velocity U1 the compressible pressurep* and the den-
sity r1, which satisfy

]

] t
U1 + U` · = U1 + U1 · = U` = − = p* + n=2U`, s2d

] p*

] t
+ U` · = p* + = ·U1 = −

] p`

] t
− U` · = p`, s3d

] r1

] t
+ U` · = r1 + = ·U1 = 0. s4d

The above equations are normalized, and correspond to their
respective unnormalized variables as follows;U1/Ms

=Ū1,g1/2p* /r0= p̄* ,g1/2r1/r0= r̄1,n /g1/2Ms
2= n̄. The time

and space coordinates are normalized by characteristic time

and length scales, respectivelyL= ==̄ ,u0t /L= t̄. Note that
the bars have been removed from all the normalized vari-
ables for the sake of convenience. HereMs=u0/Cs and e2

=gMs
2, whereMs is the fluid Mach number,g is the ratio of

the specific heats, andCs is the acoustic speed associated
with the sound waves,Cs

2=gp0/r0.

III. LINEAR INSTABILITY

A linearized dispersion relation, about constant speed
along the y direction, obtained from the system of Eqs.
(1)–(4) clearly indicates the presence of the high frequency
component of the acoustic modes in the nearly incompress-
ible hydrodynamic fluid. These modes appear in the subsonic
hydrodynamic fluid through a first order expansion of the
fluid variables and represent compressible effects to the low-
est order[9]. The dispersion relation[12], in general, is
rather complex, and is shown in Fig. 1 for the simple case
whenkx=0. The real frequency varies quadratically withky
because of the coupling between incompressible and acoustic

fluctuations(shown by the dashed-dotted, and long-dashed
lines in Fig. 1) unlike the purely incompressible linear fre-
quency mode(the solid line in the Fig. 1). The linear growth
rate (curves with squares and triangles in Fig. 1) indicates
that no linear instability can occur for theky=0 mode(essen-
tially the nonlinear flow mode), although such a mode could
possibly be generated via inverse cascading processes that
are inherently governed by the nonlinear interactions. On the
other hand, finiteky modes can give rise to linear instabilities
in the form of streamerlike structures. The linear growth rate
for high k-modes is stabilized by viscous effects. The nearly
incompressible equations are therefore a modified Eulerian
system, which contains acousticlike waves, and linearly un-
stable modes, unlike the Euler fluid equations, Eq.(1). The
dominant nonlinear interactions are due to convective non-
linear effects, Reynolds forces, such asU` ·=U1,U1·=U`,
etc., all associated with the incompressible background fluid.
The nonlinear interactions evidently couple the incompress-
ible fluid modes with the acoustic component in a complex
manner which is best revealed through nonlinear fluid simu-
lations.

IV. NONLINEAR FLOWS

We have developed a nonlinear code(NIH) to solve the
nonlinearly coupled set of NI and IN equations[i.e., Eqs.
(1)–(4)] in two spatial dimensions[12]. The code is based
upon a Fourier harmonic expansion of the evolution vari-
ables, using a 2/3 dealiased pseudospectral method in space.
The time integration used a Runge-Kutta fourth order
method, with 6310−10 accuracy in the time step. Periodic
boundary conditions are imposed along thex and they di-
rections. The initial states of both fluids, i.e., IN and NI, are
set identically to coherent waves[Fig. 2(a)].

As the NI fluid is driven by IN-fluid modes, the NI-fluid
vortices are, first, subject to the linear instability and begin to
form streamerlike structures(radially extended) for which
the ky modes are finite. Hence the vortices appear to be
shrunk in they direction, and are elongated in thex direction.

With the saturation of the linear instabilities, nonlinear
interactions begin to dominate the dynamics. Under the in-
fluence of nonlinear instabilities, the streamerlike vortices
become unstable to nonlinear perturbations and further
evolve through coalescence and merging processes to form
nearlyy-independent(i.e., ky<0) flows that vary along thex
direction skxÞ0d [see Fig. 2(c)]. Such flows are commonly
known as nonlinear flows(radially localized, poloidally
elongated, i.e.,ky<0 modes) in the literature, and have at-
tracted a great deal of attention in magnetically confined fu-
sion plasmas[13]. The fluid density fluctuations propagate as
compressional waves along they direction through alternate
compression and rarefaction processes(not shown here). The
propagation of these waves in a preferential direction(i.e.,
along they direction) is due to the nonlinearly generated
flows which convect the density fluctuations parallel to them
[see Eq.(4)]. The energy associated with the entire evolution
is depicted in Fig. 3, where the normalized kinetic energies
(KE) of the two fluids are equal att=0. For very small but
finite viscosities(m & n), the KE associated with the IN fluid

FIG. 1. Linear frequency spectrum describing normal and un-
stable modes of NI hydrodynamics. Acoustic modes in the NI fluids
are represented by dashed-dotted, and long-dashed curves and the
linear frequency of the incompressible fluid modes(solid line). The
linear growth rate of NI modes are represented by hollow squares
and filled triangles(on the righty-axis between +1 to −1).
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remains almost constant, while it grows linearly for the NI
fluids due to unstable modes. It is observed in our simulation
that the energy associated with the nonlinearly generated
flow mode provides the dominant contribution to the KE of
the NI fluid. The total KE of the NI fluid evolves through
three different stages, which repeat themselves periodically.
These correspond to nonlinear growth, saturation, and dissi-
pation stages. During these stages the modes, driven by lin-
ear instabilities, acquire nonlinear amplitudes and eventually
excite nonlinear flows. The flows thereafter quench the tur-
bulence in the saturation stage, and consequently the energy
associated with the turbulence falls off. The nonlinear flows
are destabilized further by the nonlinear instability mecha-
nism and are dissipated. At the same time, the turbulence
grows and the entire dynamics repeats itself as described
above. Thus the turbulence and the flows regulate each other
quite systematically and their interplay is shown in the Fig.
4. We further find that this phenomena is generic to a collec-
tion of large number of interacting waves.

To understand the mechanism leading to the generation of
nonlinearly excited flows observed in our simulations, con-

sider the nonlinear flow modes of zero frequency andky=0.
For this purpose, we first take the curl of Eqs.(1) and(2) to
eliminate the pressuresp` andp* , and obtain the incompress-
ible and nearly incompressible vorticity equations by ex-
pressing the respective velocity fields in terms of scalar func-
tions. The incompressible and nearly incompressible
velocities are therefore represented asU`= ẑ3 =f and U1
= ẑ3 =c+ =c. This allows us to retain the effect of com-
pressibility in the nearly incompressible hydrodynamic fluid.
A reductive perturbation method[14] is then applied to the
set of nonlinearly coupled NI and IN fluid vorticity equa-
tions. The underlying method involves expansion of the de-
pendent variables in orders ofe and equating terms of equal
order. The higher order terms in the expansion then yield the
zero frequency component(i.e., l =0 mode), which essen-
tially corresponds to the nonlinearly saturated amplitude of
the nonlinear flows. Using this method, we calculate the
saturated potential of zero frequency, i.e., the flow. The vari-
ables are expanded in spherical harmonics usingQ

=oa eaQsad, with Qsad=o, Q,
sadsx,j ,tdexpfi,skyy−vtdg,

where Q corresponds to the incompressible and the nearly
incompressible velocity potentialsf and c variables,e is a

FIG. 2. (Color) Evolution of waves in NI fluid. Shown here are the constant contours of fluid velocityuU1u. (a) Initial states for both IN
and NI fluid modes consist of large scale coherent waves.(b) End of linear phase shows formation of streamer-like vortices, which further
merge with each other due to nonlinear interactions, and form nonlinear flows mode as in(c).

FIG. 3. The kinetic energy associated with the IN(dashed-line)
and NI (solid line) fluids.

FIG. 4. The nonlinear flow mode(solid curve) and turbulence
(dashed curve) are shown in an arbitrary units.
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smallness parameter for the amplitude of the variables,j
=esy−utd, andt=e2t. The two fluid viscositiesm andn are
ordered as,se2d. The amplitudes are subject to the reality

condition,Q,
sad=Q−,

sad* andQ,
s1d=0 for ,= ±1. The first order

e1 equation then readily yieldsiD,sv ,kdc̃,
s1d=0 which is the

dispersion relation for,=1, i.e.,D1sk,vd=v−kyv. Here we
have assumed a sinusoidal dependence for the perturbed

variables,f,
s1d=f̃,

s1dsj ,tdsin kmx, and c,
s1d=c̃,

s1dsj ,tdsin kmx,
wherekm=ms2p /Ldsm=1,2, . . .d and L is the length of the
system. To second order, the vorticity equations introduce
terms of the typeU` ·=U1, which survive only for complex
v. These are transport fluxes. In our treatment, we have re-
tained the sources toe2 and higher orders. The transport
fluxes due to nonlinear terms arise only at thee2 and higher
orders. We, however, omit these terms since they are bal-
anced by sources in the steady state. The following equation

is then obtained,iDlsv ,kdc̃l
s2d+]Dl /]ky] c̃l

s1d /]j=0.
At the third order, we obtain the zero-frequency compo-

nent of the nearly incompressible fluid, i.e., the nonlinear
flow mode(l =0 mode) as

Ũ10

s2d = 2
ky

2

km
2

v
u
S 4kyvr

vr
2 + g2 +

1

u − v
D ]2

] x2uf̃1
s1du2, s5d

whereu is the group velocity of the fluid. Herevr andg are,
respectively, the real frequency and the growth rate of the
nearly incompressible fluctuations. In arriving at Eq.(5), we
make use of thef̃0

s2d component from the incompressible
fluid vorticity equation to evaluate the nonlinear terms of the
nearly incompressible fluid vorticity, which primarily results
from the Reynolds stress forces in the fluid equations. We
therefore see, analytically, that the generation of flow in our
fluid simulations is a consequence of the Reynolds stresses
that are proportional to,uf̃1

s1du2, and that the flows vary
along thex direction. As observed in our simulation the non-
linear flow mode, in the saturated state, is destabilized. To
understand what damps the flow mode, we derive the non-
linear mode coupling equations for the flow from the IN and
NI fluid vorticity equations,

] Ck

] t
− nkx

4f̃kstd = o
k=k1+k2

k2y

kx
hk2x

2 f̃k1
stdc̃k2

std

− k1x
2 f̃k2

stdc̃k1
std + k1y

2 ff̃k1
stdc̃k2

std

− f̃k2
stdc̃k1

stdgj, s6d

whereCk=c̃skx,ky=0d. The small scale viscous effects here
cannot dissipate the long wavelength flows. Hence the only
mechanism responsible for damping(and growth) of flows is
the nonlinear interaction term in Eq.(6) which imposes a

rather stringent condition on the nonlinear flows dynamics,

and is given asLk1,k2
=k2

2f̃k1
c̃k2

−k1
2f̃k2

c̃k1
. The nonlinear

flow mode will therefore grow when the spectrally averaged
Lk1,k2

is finite, and this is shown in Fig 5. For longer wave-
lengths, the nonlinear interaction parametersLk1,k2

d becomes
negligibly small and results in a weakening of the nonlinear
interactions, which then leads to nonlinear damping of the
flows [Figs 4 and 5].

V. CONCLUSION

Flow generation in an Eulerian fluid has been reported
[15] in a system with no unstable modes, resulting instead
from infinitesimally small sheared-flow perturbations which
enhance the Reynolds stresses. By contrast, we find the re-
markable result that the response and interaction of acoustic
modes in a fluid to and with incompressible turbulence leads
to the generation of periodic nonlinear flows, driven by ef-
fective Reynolds stresses. By virtue of their structure, the NI
hydro equations are ideally suited to the investigation of
wave phenomena in a fully turbulent medium and our simu-
lations here reveal the rich nonlinear complexity of this prob-
lem. The anisotropic flow generated due to nonlinear insta-
bility in our simulation convects passively the weakly
compressive density fluctuations and may hint that aniso-
tropic density fluctuations observed in the solar wind[16] in
the high plasma-b regime sb.1d could possibly be ex-
plained on the basis of nearly incompressible theory[17].

ACKNOWLEDGMENTS

S. D. and G.P.Z. was supported in part by a NASA Grant
Nos. NAG5-11621 and NAG5-10932 and an NSF Grant No.
ATM0296113.

FIG. 5. Spectrally averaged nonlinear interaction termLk1,k2
(in

arbitrary units).
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